industrial chemcials

Latest articles



Popular articles

  • Applications in Agriculture


  • In confectionery, E901 serves as a glazing agent, imparting a glossy finish to candies, chocolate, and baked goods. The wax enhances the aesthetic appeal of these products, making them more attractive to consumers while also providing a degree of protection against moisture and oxygen. Additionally, E901 is utilized in various dietary supplements and pills, where it serves as a coating agent to facilitate swallowing and protect the active ingredients within the capsule.


    e901 food additive

    e901

  • Links

  • Nitrogen is an essential nutrient for plant growth, playing a critical role in various physiological and biochemical processes. It is a fundamental component of amino acids, proteins, and chlorophyll, which are vital for the healthy development of crops. Given the increasing global population and the subsequent rise in food demand, the use of nitrogen fertilizers has become an essential practice in modern agriculture to enhance productivity and achieve food security.


  •  

  • Conclusion


  • 1. Benzene Benzene is an aromatic hydrocarbon that serves as a precursor for numerous chemicals and materials. It is primarily used in the production of styrene (for polystyrene plastics), cyclohexane (for nylon production), and phenol (for resins and adhesives). Due to its versatility, benzene is a cornerstone of the petrochemical industry.


  • One of the major users of potassium sorbate is the wine making industries. Potassium sorbate is used as a wine stabilizer because when it is added to the wine, it produces sorbic acid which is the active agent that inhibits the growth of yeast. The remaining yeasts present in the wine would continue to ferment any residual sugar into alcohol until their death. It is also used to prevent the re-fermentation of these wines. Potassium sorbate is commonly used at concentrations between 0.025% and 0.1% in the food and wine industries. It is most active in slightly acidic mediums; the pH must be low enough to enable the release of free acid that is required for efficient activity.

  • Despite its advantageous properties, urea-formaldehyde resin has garnered scrutiny due to the potential release of formaldehyde, a volatile organic compound (VOC) that is classified as a human carcinogen. Exposure to formaldehyde can lead to various health issues, including respiratory problems and skin irritation. The concern is particularly relevant in indoor environments where UF resin is used in furniture and cabinetry, leading to increased formaldehyde emissions.


  • Ammonium phosphate fertilizer provides both nitrogen and phosphorus, essential nutrients that support root development, flowering, and fruiting. This type of fertilizer is especially beneficial for crops that require high phosphorus levels, such as grains and legumes. By supplying a steady release of nutrients, ammonium phosphate helps improve soil structure and fertility over time.

  • Moreover, consumer goods industries have also benefited from 330% additives. In the realm of food production, for instance, natural additives that preserve freshness and enhance flavor are becoming increasingly popular. These additives can increase the shelf life of products without compromising their nutritional value, catering to a growing consumer demand for fresher, healthier products.


  • E202

  • Phosphoric acid, a colorless, odorless, and viscous liquid, is a vital inorganic chemical with the formula H₃PO₄. Commonly used in various industries from food and beverages to pharmaceuticals and agriculture, its significance cannot be overstated. One of the critical aspects of phosphoric acid is its pH, which can influence its behavior in different applications.


  • The use of food additives is only justified when their use has a technological need, does not mislead consumers and serves a well-defined technological function such as preserving the nutritional quality of the food or enhancing the stability of the food.

  • Ammonia Fertilizer: A Nitrogen Powerhouse

  • The classification of residual solvents is primarily based on their toxicity and potential risk to human health. The International Conference on Harmonisation (ICH) has categorized these solvents into three classes. Class 1 solvents are those that are prohibited due to their unacceptable toxicity, such as benzene and carbon tetrachloride. Class 2 solvents are limited because of their potential toxicity and include solvents like methanol and dichloromethane. Class 3 solvents are considered to have low toxic potential and are typically acceptable in pharmaceutical manufacturing, provided their levels are controlled and monitored.


  • | |
  • Understanding Emulsifier E472 Properties, Uses, and Applications